751 research outputs found

    Design sensitivity analysis of a plate-finned air-cooled condenser for waste heat recovery ORCs

    Get PDF
    The study is related to the design sensitivity analysis of a plate-finned tube bundle V-shaped air-cooled condenser design problem for a range of representative low-temperature waste heat recovery Organic Rankine Cycle (ORC) cases. An iterative design model is implemented which reveals the thermodynamic and geometric design error margins that occur when different in-tube prediction methods are used. 19 condensation heat transfer correlations are used simultaneously within arrays of geometric and thermodynamic variables. Through attained 19 different convective coefficients, a design sensitivity on the calculated overall heat transfer coefficient, total transferred heat, degree of subcooling, required tube and fin material amount, air- and refrigerant-side pressure drops is reported

    Intube two-phase flow probabilities based on capacitance signal clustering

    Get PDF
    To study the objectivity in flow pattern mapping of horizontal two-phase flow in macroscale tubes, a capacitance sensor is developed for use with refrigerants. Sensor signals are gathered with R410A in an 8mm I.D. smooth tube at a saturation temperature of 15°C in the mass velocity range of 200 to 500kg/m²s and vapour quality range from 0 to 1 in steps of 0.025. A visual classification based on high speed camera images is made for comparison reasons. A statistical analysis of the sensor signals shows that the average and the variance are suitable for flow regime classification into slug flow, intermittent flow and annular flow by using a the fuzzy c-means clustering algorithm. This soft clustering algorithm perfectly predicts the slug/intermittent flow transition compared to our visual observations. The intermittent/annular flow transition is found at higher vapour qualities, but with the same trend compared to our observations and the prediction of [Barbieri et al., 2008, Flow patterns in convective boiling of refrigerant R-134a in smooth tubes of several diameters, 5th European Thermal-Sciences Conference, The Netherlands]. The intermittent/annular flow transition is very gradual. A probability approach can therefore better describe such a transition. The membership grades of the cluster algorithm can be interpreted as flow probabilities. These probabilities are further compared to time fraction functions of [Jassim et al., 2008, Prediction of refrigerant void fraction in horizontal tubes using probabilistic flow regime maps

    Model predictive control of a free piston compressor/expander with an integrated linear motor/alternator

    Get PDF
    Linear positive displacement machines are becoming increasingly more attractive for applications that are normally known as unconquerable niches of rotary and scroll machines. Free-piston machines are characterized by the absence of a crank mechanism, since there is a direct transformation of electrical energy into the piston movement. From the point of view of manufacturing, these machines benefit from a higher robustness and reliability because of less mechanical components involved and reduced frictional losses associate with a conventional crank mechanism. However, the major challenge in replacing the rotary machines by linear ones is a lower efficiency at lower speeds which is unavoidable because of the nature of linear motion: continuous operation means a reciprocating movement within a stroke length with significantly long periods of acceleration and deceleration when the speed is far from its optimal value. However, the advantage of free-piston machines is the fact that the motion profile is freely configurable within physical constraints, which provides a possibility to optimize the speed given the efficiency map of particular linear motor. While the methods and results of the efficiency assessment for rotary machines are widely available, there is a lack of these analyses for linear machines. The current study provides in-depth analyses of a double-coil iron core linear motor also acting as a generator

    Design sensitivity analysis of using various in-tube condensation correlations for an air-cooled condenser for ORCs

    Get PDF
    The study is related to the evaluation of using 19 condensation heat transfer correlations in an annular finned horizontal round tube V-shaped air-cooled condenser design problem for a representative low-temperature waste heat recovery Organic Rankine Cycle (ORC) case. The condensation is realized through cold air provided by the fan suction at a mass flow rate of 90,35 kg/s, whereas the working fluid mass flow rate is 7,8 kg/s. The considered condensation temperature is 40°C which corresponds to a saturation pressure of 1,17 bar. The ambient air is considered to be 15°C. The investigated working fluid is SES36. For a given set of geometrical constraints, an iterative condenser design model is implemented. All considered correlations are applied separately for the same boundary conditions. The design sensitivity on the overall heat transfer coefficient, total transferred heat, required fan power, air- and refrigerant-side pressure drops is assessed. By those means, the engineering error margin of using different calculation tools in designing air-cooled condensers for ORC is reported
    corecore